Out-of-plane vibration modes of nucleic acid bases

I. Pyrimidine bases

R. Letellier, M. Ghomi, and E. Taillandier*

Laboratoire de Spectroscopie Biomoléculaire, U.F.R. Biomédicale de Bobigny, Université Paris XIII, 74, Rue Marcel Cachin, F-93012 Bobigny Cedex, France

Received February 19, 1986/Accepted in revised form August 1, 1986

Abstract. The out-of-plane vibration modes of uracil, cytosine and their deuterated and methylated derivatives such as 1,5-dimethyluracil (1-methylthymine), 1-methylcytosine, 5-methylcytosine and 1,5-dimethylcytosine have been computed. The calculated wavenumbers have been compared to the published Raman peak and infrared band positions observed for solid or aqueous samples. The calculations have been carried out on a non-redundant set of symmetrical coordinates and a valence force field has been used. Some characteristic modes located between 750 and 800 cm⁻¹ found in the infrared spectra of 2'-deoxycytidine, 2'-deoxythymidine 5'monophosphate and polynucleotides containing cytosine and thymine bases can be interpreted from the calculated results on 1-methylthymine and 1-methylcytosine.

Key words: Uracil, thymine, cytosine, vibration modes, nucleic acids, normal coordinate analysis

Introduction

In-plane vibration modes of nucleic acid bases have been intensively studied in recent years. In fact, the 1700–1300 cm⁻¹ region of nucleic acid Raman and infrared spectra is mainly assigned to base in-plane modes. Recently, linear dichroism studies showed that the narrow and intense infrared bands observed in the 800–750 cm⁻¹ region of polynucleotide spectra are polarized along the double-helix axis and arise from base out-of-plane vibration modes (Ghomi et al. 1984; Chinsky et al. 1984; Taillandier et al. 1984, 1985). In the 800–600 cm⁻¹ region the ring-breathing modes located in the base planes are observed in the Raman spectra of polynucleotides (Pohl et al. 1973; Thamann et al. 1981; Nishimura

et al. 1984; Benevides et al. 1984; Thomas and Peticolas 1984) but not in the IR spectra.

In this work we discuss the results obtained for pyrimidines and in another paper (Letellier et al. 1986 a) those concerning purines. Our aim is to confirm by calculation, the experimental assignments of the infrared bands observed between 800 and 750 cm⁻¹ as effectively corresponding to the out-of-plane vibration modes of the base residues. For this a systematic investigation has been undertaken in order to adopt a force field allowing us to reproduce the previously published data concerning the out-of-plane motions of pyrimidines.

Theoretical considerations

On the basis of X-ray diffraction data the nucleic acid bases are planar. However, the presence of a methyl-group in the 5 position of thymine makes it difficult to separate the vibrations of this molecule into two distinct families of in-plane and out-ofplane modes. It was shown previously (Susi and Ard 1974) that the bond-stretch and angular deformations of the methyl-group give rise to the modes with wavenumbers situated above 900 cm⁻¹. Thus, their interaction with the ring out-of-plane modes arising from the out-of-plane wagging (o.p.w.) or torsion modes located generally below 900 cm⁻¹ should be negligible. We have verified by additional calculations (not detailed here) that even the CH3rocking modes do not interact with the ring nonplanar vibrations.

So, taking account of this fact, we have supposed that the methyl-group found in thymine, as in other methylated analogs, can be considered as a rigid dynamic unit with the mass concentrated on the carbon atom. So, one can suppose, in the framework of this approximation that all of the nucleic acid bases and their methylated derivatives studied in

^{*} To whom offprint requests should be sent

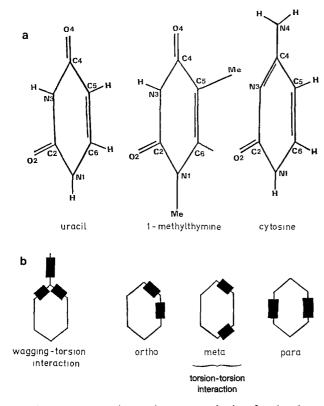


Fig. 1. a Representation and atom numbering for the three molecules on which the out-of-plane vibration mode calculations are detailed in this work. *Me*: methyl group. **b** Interaction range considered in the present calculations between an out-of-plane wagging coordinate and cyclic torsion coordinates on the one hand and between the cyclic torsion coordinates on the other. See Table 1b for the corresponding force constants

this work belong to the C_s point-group and each one possesses 2N-3 in-plane (A'-symmetry) and N-3 out-of-plane (A''-symmetry) modes; N is the number of atoms in each molecule. Therefore, uracil, thymine and their analogs give rise to 9 and cytosine to 10 out-of-plane vibration modes (Fig. 1a).

When these bases are associated with the nucleic acid chains their symmetry is consequently lowered. Due to this fact the vibration mode couplings will be consequently modified (Lu et al. 1979) and the above assumptions will not be valid. In this case, the calculations should be done by considering the real overall symmetry of the nucleic acids. However, the results of the present calculations would be helpful in order to examine the nature of the vibration modes of the bases in terms of their local symmetry and in the absence of the perturbation induced by their connection to the nucleic acid double-helical chains.

In order to preserve the harmonic approximation of the potential field, it is necessary to perform the vibration mode calculations on a non-redundant set of internal coordinates. In uracil and thymine 12 non-planar internal coordinates (6 torsions + 6 o.p.w.) are numbered while cytosine involves 14 such coordinates (7 torsions + 7 o.p.w.). So, there are 3 redundant coordinates in uracil and thymine and 4 in cytosine.

Moreover, it is known that the force constants in a redundant molecular system are not the same as in a non-redundant one. Previously, the expression of the force constant corrections in redundant molecular coordinates have been reported (Van Zandt and Lu 1977). The numerical procedure used to eliminate the superfluous coordinates, has been published previously (Ghomi and Taillandier 1985). An independent set of non-redundant symmetrical coordinates (S) has been obtained and used in vibration mode calculations.

The interatomic interactions due to the out-ofplane motions have been expressed by means of a valence force field. The non-planar potential energy, $V_{n p.}$, has been considered as:

$$V_{\rm n p.} = V_{\rm diag} + V_{\rm int} \,. \tag{1}$$

Where V_{diag} is the principal part of the potential energy including the diagonal force constants:

$$2 V_{\text{diag}} = \sum_{i} K_{\omega_i} (\delta \omega_i)^2 + \sum_{j} K_{\tau_j} (\delta \tau_j)^2, \qquad (2)$$

 $\delta\omega_i$ refers to an o.p.w. and $\delta\tau_j$ to a torsion internal coordinate. K_{ω_i} and K_{τ_i} represent the corresponding force constants. In order to reduce the number of necessary force constants, we have assigned the same force constant to all similar internal coordinates and considered the force field as transferable from one base to another.

 $V_{\rm int}$ is the interaction part of potential energy involving the off-diagonal constants. It is composed by the following terms:

$$2 V_{\text{int}} = \sum_{\substack{l,j\\l \neq j}} K_{\omega_{l}, \omega_{j}}(\delta\omega_{l}) (\delta\omega_{j}) + \sum_{l,j} K_{\omega_{l}, \tau_{j}}(\delta\omega_{l}) (\delta\tau_{j})$$
$$+ \sum_{\substack{l,j\\l \neq j}} K_{\tau_{l}, \tau_{j}}(\delta\tau_{l}) (\delta\tau_{j}). \tag{3}$$

The first term reflects the interaction between o.p.w.'s considered previously in benzene (Scherer 1967) or imidazole (Cordes and Walter 1968). Only the interactions between the C=O o.p.w.'s in uracil and between C-NH₂ and NH₂ have been considered in order to improve the calculated results (Table 1 b). The interactions between an o.p.w. and the cyclic torsion coordinates are involved in the second term. It is found that each o.p.w. interacts mainly with its two adjacent torsion coordinates (Fig. 1 b). The absolute values of the K_{ω_i, τ_i} force constants for a given value of i, are supposed to be the

e wassins stants	: : Torsion for	ce constants
Values (mdyn.Å)	: Coordinates	Values (mdyn.Å)
0.370	: : T(C-C)	0.520
0.300	: T(C=C)	0.520
0.334	: T(C-N)	0.255
0.334	T(C=N)	0.629
0.334	T(C-NH2)	0.112
0.334		
0.035	: :	:
	Values (mdyn.Å) 0.370 0.300 0.334 0.334 0.334 0.334	Values : Coordinates (mdyn.Å) : Coordinates (mdyn.Å) : T(C-C) : T(C-C) : T(C-N) : T(

Table 1a. Diagonal force constants for the out-ofplane vibration modes of the pyrimidines and their methylated derivatives. W designs an out-ofplane wagging coordinate and T a torsion coordinate. Cm: methyl group

same. They are obviously of opposite sign because of the permanent out-of-phase motions corresponding to two adjacent cyclic torsions (Table 1b). Finally, the third term in Eq. (3) relates to the interaction between the torsion coordinates. We have separated the *ortho*, *meta*, and *para* contributions among all possible interactions (Fig. 1b) and given the same value of K_{τ_0, τ_0} to each family of interactions (Table 1b).

To calculate the vibrational wavenumbers and atomic displacement amplitudes the Wilson GFmethod has been used (Wilson et al. 1955). The calculation program NCTB (Shimanouchi 1968) has been simplified and divided into four segments in order to obtain a version suitable for small computers. All numerical calculations have been performed on a DPS6/96 Honeywell-Bull computer. The force constants have been refined using a meansquare method (Table 1a and b). To assign the vibration modes with clarity the (PED) matrix, representing the potential energy distribution calculated on the basis of the non-redundant S coordinates, has been projected on the internal coordinates R (Letellier et al. 1986b). Moreover, by means of a simple program developed in our laboratory the molecular deformation during a given vibration mode has been drawn on a graphic screen SECAPA 770A. Hardcopies of these graphs are presented here.

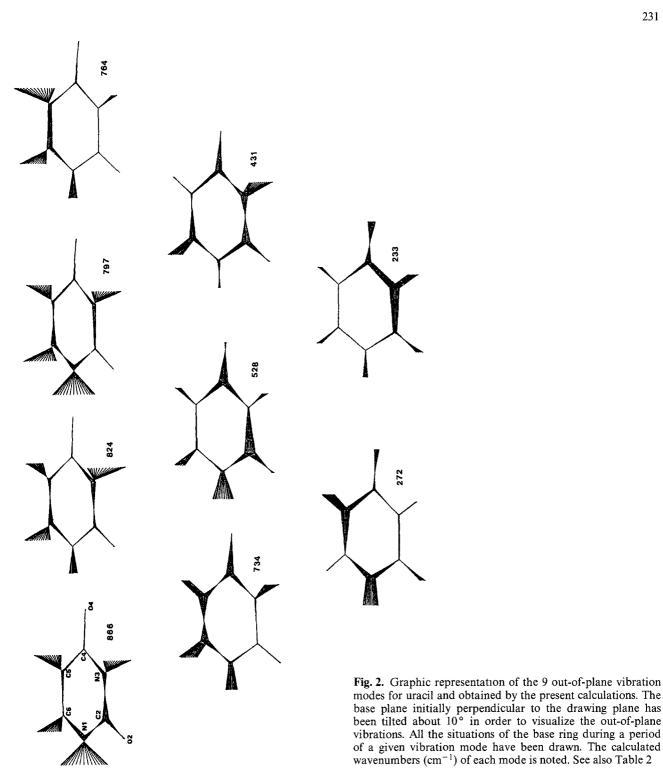
Results

A. Uracil and its deuterated derivatives

To construct B_s and G_s matrices (Ghomi and Taillandier 1985) the geometry of crystalline uracil (Stewart and Jensen 1967) has been used. Raman and infrared spectra of polycrystalline uracil and its

C,C-dideutero, N,N-dideutero and perdeutero derivatives have been studied by Susi and Ard (1971) and the non-planar contributions have been discussed (Table 2). Because of the existence of an inversion symmetry in uracil crystals the infrared and Raman peak positions do not coincide. However, good agreement has been obtained between the experimental and calculated results based on isolated molecules with C_s -symmetry. The changes in the uracil vibrational spectra upon selective deuterations have been satisfactorily reproduced, and are in good agreement with the experimental interpretation proposed originally by Susi and Ard (1971). Figure 2 shows the graphic representation of the atomic displacements for the 9 out-of-plane vibration modes of uracil.

B. 1,5-dimethyluracil or 1-methylthymine and its N3-deuterated derivatives


The effect of methylation of the N1 and C5 positions of uracil on its vibrational spectra were first studied by Kyogoku et al. (1967). In their work the single crystals of 1-methylthymine were cleaved along the principal crystallographic axis. The infrared spectra were then studied by a properly selected polarization of the incident beam in order to separate the planar and non-planar vibration modes.

Later, Guay et al. (1983) recorded the Raman and infrared spectra of polycrystalline samples as well as the Raman spectra of aqueous 1-methylthymine (Table 3).

The calculated results based on the structural data of 1-methylthymine obtained from X-ray diffraction patterns of crystalline samples (Hoogsteen 1963) interpret well the experimental wavenumbers and also reflect the N3-deuteration effect on the peak positions (Table 3). Graphic representation of

Table 1b. Non-diagonal force constants for the out-of-plane vibration modes of the pyrimidines and their methylated derivatives. W designs an out-of-plane wagging coordinate and T a torsion coordinate. Cm: methyl group

	•					
: Interactions				thymine and erivative		and its :
:	: values	deviations	values	deviations	values	deviations
: :	: : (md)	/n.Å)	: (md:	vn.Å)	(md 2	/n.Å)
: wassins, torsion	: :		•	:		:
: :W(N1-H),T(N1-C2)	0.079	(0.04)	: :	9 8	0.067	(0.041) :
:W(N1-H),T(N1-C6)	-0.079	(0.047		:	-0.067	10.0417
:W(C2=0),T(N1-C2)	-0.056		-0.056		-0.056	
:W(C2=0),T(N3-C2)	: 0.056	(0.0)	0.056	(0.0)	0.056	(0,0)
(N3-H),T(N3-C2)	0.062	(0.00)	0.002	(0.44)		
:W(N3-H),T(N3-C4)	-0.062	(0.33)	-0.002	(0.14) : :		- - -
:W(C4=0),T(N3-C4)	-0.056	(0.0)	-0.056	(0.0)		#
:W(C4=0),T(C4-C5)	0.054	(0.0)	0.056	(0.0)		: :
:W(C5-H),T(C4-C5)	-0.171	(0.02) :	!	:	-0.171	(0.0)
:W(C5-H),T(C5=C6)	0.171	(0.02)			0.171	
:W(C6-H),T(C5=C6)	-0.127	(0.02)	-0.140	(0.0)	-0.12 <i>7</i>	(0.0)
:W(C6-H),T(N1-C6)	0.127	(0,02)	0.140	(0.0)	0.127	10.07
:W(C5-Cm),T(C4-C5)	• •	:	-0.056		-0.056	(0.0)
*W(C5-Cm),T(C5=C6)			0.056	(0.0) :	0.056	(0.0) :
:W(N1-Cm),T(N1-C2)			0.056	(0.0)	0.056	(0.0)
:W(N1-Cm),T(N1-C6)	· !	:	-0.056	:	-0.056	1
:W(C4-N4),T(C4=N3)		:		•	-0.056	(0.0) #
:W(C4-N4),T(C4-C5):		:		:	0.056	1
: torsion, torsion :		:		:		:
:::		:		:		*
Ortho	-0.018	(0.0)	-0.053	(0.0)	-0.018	(0.039)
Meta :	-0.012	(0.0)	0.012	(0.0)	-0.012	(0.004)
Para :	-0.004	(0.0)	-0.004	(0.0)	-0.004	(0.0) =
enieesw,enieesw		:		:		# #
: H/C2=0) H/C/=0)	0.004	(0.0)	0.0	* * * * * * * * * * * * * * * * * * *		:
: W(C2=0),W(C4=0) : : : : W(NH2),W(C4-N4) :		(0.0) :	0.0	(0.0) :	0.041	(0.0)
: :::				:		

the 1-methylthymine non-planar modes is shown in Fig. 3.

C. Cytosine and its N-deuterated derivative

The calculations are based on the crystalline structural data proposed by Barker and Marsh (1964)

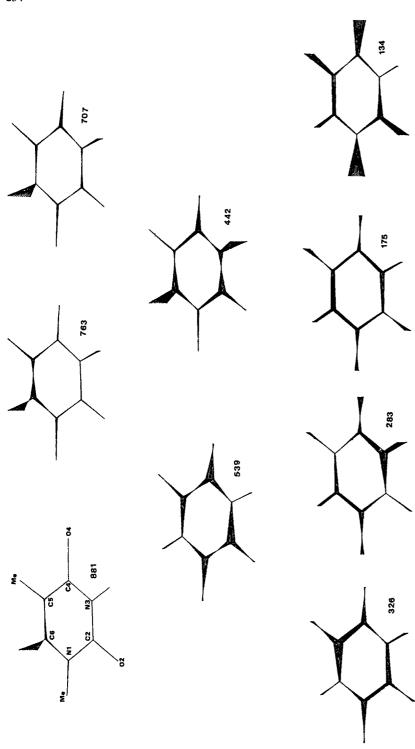
and the experimental wavenumbers obtained on cytosine polycrystalline samples (Table 4) (Susi et al. 1973). As the effect of the crystalline field on the vibration modes is not considered in this work, all of the originally proposed non-planar modes (Susi et al. 1973) cannot be assigned by the present calculations. However, as Table 4 shows, the calculated results are in good agreement with the selected ex-

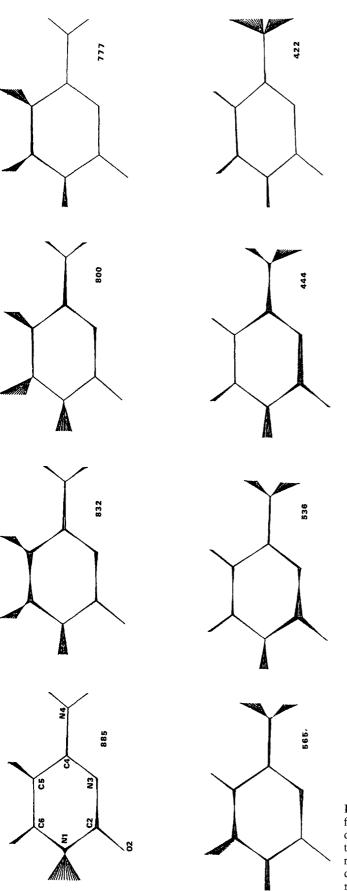
Ura	Urac i 1		-0.0	dideutero uraci]		z :	X.N-dideutero uracil			erdeutero uracil
Exp.:Cal.: Assisnments (PEDX)	(PEDX)	1 Exp.:Cal.:	.:Cal.:	Assisnments (PEDX)	Exp. : Cal.:	[a]	Assianments (PEDZ)	Exp.:Cal		Assianments (PEDX)
1 866: W(N1-H)(40); W(N3-H)(15) 1 T(C5=C6)(12)	(N3-H) (15)	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		# (40)(H-CN/H = (777/H-FN/H						
824: W(N3-H)(36); W(C6-H)(24) : T(C5=C6)(12); W(C5-H)(11)	(C6-H)(24) W(C5-H)(11)				######################################	858	T(C5=C6)(34); W(C6-H)(30) W(C5-H)(25)			
3 797: W(N1-H)(28); W(C6-H)(19) : T(N1-C6)(12); W(N3-H)(11)	J(C6-H)(19) W(N3-H)(11)		••••		H H H				12 10 20	
IR: : : 1C5-H)(45); W(C6-H)(29)	W(C6-H)(29)	ha ga su su s ha an au su su s	te no so so s	70 00 EE EE E	1778 IR:	IR: 771:	W(C6-H)(53); W(N1-D)(16)			
W(C5-H)(24); T(N1-C6)(16);	#(C5-H)(24); #(C4=0)(22) ; T(M1-C6)(16); T(C5=C6)(14);	767 R : 767 R : 1764 IRR : 1	,	W(C6-D)(37); W(C5-D)(27)		IR: 760:	W(CS-H)(59); W(C6-H)(13) T(C4-C5)(11)	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7,3	W(C6-D)(27); W(C5-D)(18) W(M1-D)(18); W(N3-D)(14) W(C4-0)(11); W(C2-0)(11)
			00 bq vs A4	о и и и	:62-1 1R:	635:	W(C2=0)(30); W(H1-D)(22) W(N3-D)(19) I	: 622 IR:	660:	W(N1-D)(21); W(C5-D)(20) W(C2=0)(19); W(N3-D)(13) W(C6-D)(11)
		: :602 R : :598 IR:	607:	M(C6-D)(45); W(C4=0)(20) : W(C5-D)(17)				:595 IR:	604:	W(C6-D)(48); W(C4=0)(18)
			** ** *	32 (3	584 IR:	576:	W(N3-D)(51); W(N1-D)(25)		** ** *	
		:559 IR:	535	M(C5-D)(46); T(C5=C6)(29); T(C4-C5)(13)				580 IR:	568:	W(N3-D)(46); W(N1-D)(23)
528: W(CZ=0)(3B); W(C4=0)(25) : T(N1-C5)(23) : 431: W(C2=0)(3B); W(C4=0)(22 : T(N3-C4)(16); T(C2-N3)(1	W(C4=0)(25) = W(C4=0)(22) = T(C2-N3)(11)=	: 527 IR:	2005	W(C2=0)(35); T(N1-C6)(25) W(C6-D)(21)		442:	W(N1-D)(35); T(N1-C6)(31) W(C4=0)(13); T(N1-C2)(11)	0 0 0 0	530:	W(C5-D)(49); T(C5=66)(23) T(C4-C5)(16)
		: 416 R :		W(C4=0)(24); W(C2=0)(23) = T(N3-C4)(12); T(C5=C6)(11);	18 16 48 : 19 18 18			415 R:	405:	T(N1~C6)(31); W(N1-D)(30) W(C6-D)(14)
				1 (C2-N3) (10)		380:	W(C2=0)(30); T(N3-C4)(24) T(C2-N3)(13); W(N1-D)(12) W(N3-D)(10)	16 to 26 to 16	374:	W(C2=0)(28); T(N3=C4)(25) T(C2-N3)(18)
272: T(N1-C2)(27); 1 T(C2-N3)(16);	; T(C4-C5)(19); ; W(N1-H)(10) ;		266.	T(C4-C5)(28); T(N1-C2)(24); T(C2-N3)(13)	4 20 22 24 78	267:	T(N1-C2)(43); T(C2-N3)(19) T(N1-C6)(13); T(C4-C5)(12)		2611	T(N1-C2)(40); T(C4-C5)(17) T(N1-C6)(17); T(C2-N3)(15)
2337 W(C4=0)(37); : T(C4-C5)(11)	# W(C4=0)(37); W(C2=0)(15) ; T(C4=C5)(11); T(N3=C4)(11);		2321	W(C4=0)(37); W(C2=0)(15); T(N3-C4)(10)	10 VC 82 SE	232:	W(C4=0)(38); T(N3-C4)(16) W(C2=0)(15); T(C4-C5)(14)	14 00 00 00	 80 80 80	W(C4=0)(39); W(C2=0)(15) T(N3-C4)(15) T(C4-C5)(12)
	1									

Table 3. Comparison between the calculated and experimental wavenumbers (cm⁻¹) for the out-of-plane vibration modes of 1-methylthymine and its N3-deuterated analog. Assignments are based on the potential energy distribution (PED in per cent) described upon the internal coordinates. *Exp.*: Experimental data: (a): Raman spectra of aqueous solutions (Guay et al. 1983). (b): Raman spectra of polycrystalline samples (Guay et al. 1983). (c): Infrared spectra of oriented single crystals (Kyogoku et al. 1967). (d): Infrared spectra of polycrystalline samples (Guay et al. 1983). *Cal.*: Calculated wavenumbers (this work). W designs an out-of-plane wagging coordinate and T a torsion coordinate. Cm: methyl group. D: Deuterium

		1-Methylthymine			lthymine N3-deuterated
	Cal.			:Cal.	
	881	₩(N3-H)(69); T(N3-C4)(16) T(C2-N3)(11)	: :	:	
764(b) 765(c) 763(d)	: :	W(C6-H)(69)	: :772(b) :	: : 768 :	: : W(C6-H)(60); W(C5-Cm)(11) :
705(c) 705(d)	707	T(C5=C6)(28); W(C6-H)(26) T(N1-C6)(18)	:757(d) : :	: 723 : :	: W(C6-H)(33); T(C5=C6)(19) : W(N3-D)(19); T(N1-C6)(13) :
			:	: 649 :	: ; W(N3-D)(50); T(N3-C4)(12) ; T(C2-N3)(10) ;
533(a) 531(b) 530(c)	539	W(C2=0)(30); W(C4=0)(29) W(N1-Cm)(24); W(C5-Cm)(15)	:528(6)	: 539 : :	: : W(C4=0)(30); W(C2=0)(28) : W(N1-Cm)(25); W(C5-Cm)(14) : :
:	: :	W(C2=0)(37); W(C4=0)(20) T(N3-C4)(10)	415(d)	418	: : : : W(C2=0)(36); W(C4=0)(18) : T(N3-C4)(16); T(C2-N3)(13)
328(b):	:	W(C2=0)(11); W(C4=0)(10)	325(b)	: :	: W(C5-Cm)(36); W(N1-Cm)(15) : W(C4=0)(11); W(C2=0)(10)
285(b): 282(a):	:		:	: :	: : T(C4-C5)(27); W(N1-Cm)(21) : W(C4=0)(14); T(N3-C4)(12) : T(N1-C2)(10)
:	:		:		: W(N1-Cm)(25); W(C5-Cm)(19) : W(C4=0)(10); W(N3-D)(10)
:		T(N1-C2)(35); T(N1-C6)(22); T(C4-C5)(20)	: :		T(N1-C2)(35); T(N1-C6)(22) T(C4-C5)(20)
;			:		

Table 2. Comparison between the calculated and experimental wavenumbers (cm⁻¹) for the out-of-plane vibration modes of uracil and its selectively deuterated analogs. Assignments are based on the potential energy distribution (PED in per cent) described upon the internal coordinates. Exp.: Experimental Raman (R) and infrared (IR) peak positions of polycrystalline uracil (Susi and Ard 1971). Cal.: Calculated wavenumbers (this work). W designs an out-of-plane wagging coordinate and T a torsion coordinate. D: Deuterium




Fig. 3. Graphic representation of the 9 out-of-plane modes for 1-methylthymine. The base plane initially perpendicular to the drawing plane has been tilted about 10° in order to visualize the out-of-plane vibrations. All the situations of the base ring during a period of a given vibration mode have drawn. The calculated wavenumbers (cm⁻¹) of each mode is noted. See also Table 3

perimental data. The effect of N-deuteration (in 1 and 4 positions) has also been reproduced by the calculations. Graphic representation of the 10 calculated non-planar modes of cytosine is shown in Fig. 4.

D. Cytosine methylated derivatives

Methylation on the C5-site of cytosine has been studied by infrared spectroscopy (Goel et al. 1976).

On the basis of the calculated results, the non-planar contribution of 5-methylcytosine vibration modes can be separated (Table 5). Graphic representation of these modes is shown in Fig. 5. The experimental data of the other cytosine methylated analogs is not known. However, we found it interesting to extend our force field to 1-methylcytosine and 1,5-dimethylcytosine in order to study in detail, the effect of methylation the 1 and/or 5 positions (Table 5).

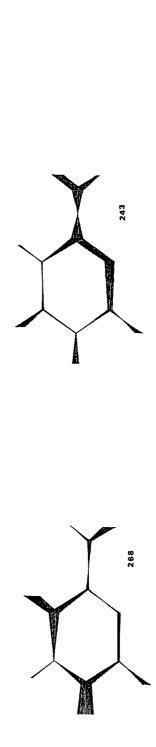
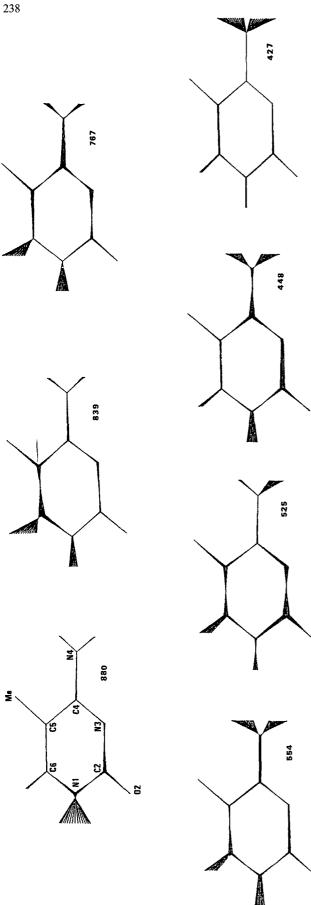


Fig. 4. Graphic representation of the 10 out-of-plane modes for cytosine. The base plane initially perpendicular to the drawing plane has been tilted about 10° in order to visualize the out-of-plane vibrations. All the situations of the base ring during a period of a given vibration mode have been drawn. The calculated wavenumbers (cm⁻¹) of each mode is noted. See also Table 4

Table 4. Comparison between the calculated and experimental wavenumbers (cm⁻¹) for the out-of-plane vibration modes of cytosine and cytosine- d_3 (N1 and N4 deuterated analog). Assignments are based on the potential energy distribution (PED in per cent) described upon the internal coordinate. Exp.: Experimental Raman (R) and infrared (IR) peak positions of polycrystalline cytosine (Susi et al. 1973). Cal.: Calculated wavenumbers (this work). W designs an out-of-plane wagging coordinate and T a torsion coordinate. D: Deuterium

			:			
		Cytosine	!		·	Cytosine-d3
Екр.:Са	al.:	Assignments (PED%)	; E	ЖP =	:Cal.	: Assignments (PED%)
		W(N1-H)(76); T(N1-C2)(12)	: : :		: : :	:
:	:		:	R	: 839 :	: : T(N3=C4)(20); W(C2=0)(18) : T(C4-N4)(18); W(N1-D)(17) : W(C5-H)(10); T(C2-N3)(10)
823 IK: 8		W(C5-H)(41); W(C6-H)(38)	:		: : 821 :	: : W(C6-H)(52); W(C5-H)(47)
782 R : 8 782 IR:	-	W(C6-H)(52); W(N1-H)(19)	:		-	: :
	777:	W(C5-H)(62); W(C6-H)(34)	: :		: 776 :	:
:	:		:611 :605 :	R IR	:	: : W(N1-D)(65); W(C2=0)(16)
568 R : 566 IR: 5	565:	W(NH2)(42); W(C5-H)(19) T(N3=C4)(12)		R IR	:	: : T(N3=C4)(26); W(C2=0)(26) : W(C5-H)(16); T(C2-N3)(10)
520 IR: 5	36:	W(C2=0)(52); W(NH2)(18) T(N3=C4)(13)	: :	:	: :	
			: 438	R	438	: : W(N1-D)(39); W(C2=0)(27) : T(N1-C2)(16) :
421 IR: 4	:22: : :	!	: :388	:	371:	: : : W(ND2)(5B); W(C4-N4)(2B)
:	:		: :	:		T(C4-N4)(90)
:	:	T(C2-N3)(40); T(N1-C2)(30); W(N1-H)(12)	;	:	259	T(N1-C2)(33); T(C2-N3)(30)
: 2 : :	43:	W(C4-N4)(63); W(C2=0)(13) : T(N3=C4)(12) :	 	:	238	W(C4-N4)(64); W(C2=0)(14) T(N3=C4)(14)
			: : -	: ::		

Discussion


Up to now, most theoretical work has been concentrated principally on the planar vibration modes of the pyrimidine bases or of the corresponding residues in order to separate the non-planar contributions in the vibrational spectra (Susi and Ard 1971, 1974; Susi et al. 1973; Tsuboi et al. 1973; Bowmann and Spiro 1980; Peticolas and Strommen 1980; Szczesniak et al. 1983; Ghomi et al. 1986; Tsuboi et al. 1986). Only a limited number of investigations have been devoted to the out-of-plane modes (Eyster and Prohofsky 1974; Devi Prasad and Prohofsky 1984; Ghomi et al. 1984) which deal essentially with the

skeletal motions of the bases. Taking into account the importance of hydrogen motions in the vibration modes of nucleic acids (Letellier et al. 1986b) we have performed the present calculations in order to obtain a general, complete and transferable force field for all pyrimidine bases. A valence force field and non-redundant symmetrical coordinates have therefore been used. The diagonal force constants are perfectly transferable from one base to another and the alteration in the off-diagonal force constants reflects mainly the perturbation induced by the methyl group in pyrimidine rings.

Moreover, the extension of the derived force field to the methylated pyrimidines allows us to

Table 5. Calculated wavenumbers (cm $^{-1}$) and assignments (PED) for the out-of-plane vibration modes of 5-methylcytosine, 1-methylcytosine and 1,5-dimethylcytosine respectively. Assignments are based on the potential energy distribution (PED in per cent) described upon the internal coordinate. Exp.: Infrared spectrum of 5-methylcytosine (Goel et al. 1976). Cal.: Calculated wavenumbers (this work). W designs an out-of-plane wagging coordinate and T a torsion coordinate. Cm: methyl group

מו	5-Methy] Cytosine	-	1-116[DY1 CYTOSINE			1,U-DIMETRY CYTOSIDE
- L K	Assignments (PED%)	Cal.:	Assignments (PEDZ)		#Cal.:	Assisnments (PED%)
: 880:	W(N1-H)(77); T(N1-C2)(12)	878:	W(C5-H)(38);	W(C6-H)(33)	. ET 52 1	
839:	. W(C6-H)(81)	849:	W(C6-H)(41); W(C5-H)(28)	5-H)(28)	843:	843: W(C6-H)(72)
767:	: W(C6-H)(33); W(C4-N4)(17) : T(N3=C4)(14); W(N1-H)(10)	778:	W(C5-H)(51); W(C6-H)(44)	5-(1)(44) H	776:	W(C6-H)(43); W(N3=C4)(15) T(C4-N4)(14); W(C2=0)(13)
554	# W(NH2)(66); W(C2=0)(15)	579	W(N1-Cm)(34); W(C2=0)(10)	m(RH2)(32)	582	W(N1-Cm)(33); W(C2=0)(33) W(NH2)(23)
	: W(CP=0)(42); W(C5-Cm)(18) : T(N3=C4)(15)		W(C2=0)(58); I(N3=C4)(16)	3=C4)(16) H		W(C2=0)(37); W(C5-Cm)(31) T(N3=C4)(15)
448:	: : W(C4-N4)(35); W(NHP)(34) : W(C2=0)(18)	472:	W(NH2)(46); W(C4-N4)(21) W(N1-Cm)(15)	N4)(21)	474	W(NH2)(47); W(C4-N4)(23) W(N1-Cm)(14)
427:	: 1(C4-N4)(95)	424:	1(C4-N4)(96)	E1 26	427:	T(C4-N4)(93)
333:	: W(C5-Cm)(56); T(C2-N3)(18) : T(N1-C2)(11)	306	W(N1-Cm)(38); W(C4-N4)(26; T(C2-N3)(20)	24-N4)(26) #	345:	W(C5-Cm)(39); T(C2-N3)(18) W(N1-Cm)(14)
242		255:		1-C2)(41)	267:	W(C4-N4)(60); T(N3=C4)(11)
į	W(C2=0)(12)			36 17	187:	W(N1-Cm)(28); W(C5-Cm)(21) W(C4-N4)(21); W(C2=0)(10)
	: 1(C2-N3)(28); 1(N1-C2)(24) : W(C5-Cm)(17); W(N1-H)(13) :		T(N1-C2)(38); W(C2=0)(13)	W(R1-Cm)(33)		1(N1-C2)(53); W(N1-Cm)(22) T(C2=0)(10); W(C2=N3)(10)

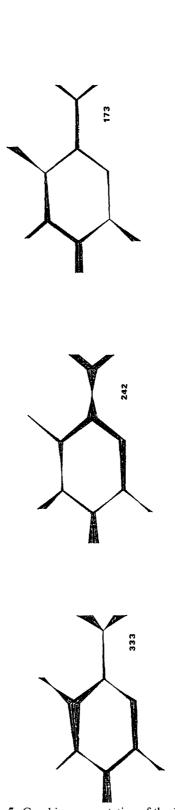


Fig. 5. Graphic representation of the 10 out-of-plane modes for 5-methylcytosine. The base plane initially perpendicular to the drawing plane has been tilted about 10° in order to visualize the out-of-plane vibrations. All the situations of the base ring during a period of a given vibration mode have been drawn. The calculated wavenumbers (cm⁻¹) of each mode is noted. See also Table 5

Fable 6a. Comparison between the experimental and calculated results for the characteristic infrared band located around 780 cm⁻¹ and correlated to a cytosine residue out-ofplane mode.

S'-deoxycytidine (*S'*-dC) infrared spectra (Taillandier et al. 1985). Poly (dG-dC) · poly (dG-dC) infrared spectra (Taboury et al. 1985). Poly (dA-dC) · poly (dG-dT) infrared spectra (Taillandier et al. 1984).

The calculated wavenumbers of 1-methylcytosine and 1,5-dimethylcytosine (this work) are also reported. For assignments see Table 5 (A): A form; (B): B form and (Z): Z form.

1 1 1	" " " " " " " " " " " " " " " " " " "	rure N-deuteraed	(A) 782 (A) 777 776 (Z) 768 (Z) 776 771 (Z) 784 (Z) 1 (Z) 1 (Z) 784 (Z) 1 (Z
; ; ;			1
Experimental	: :roly(dG-dC).roly(dG-dC):roly(dA-dC).roly(dG-d1):1-methylcytosine:roly(dG-dm5C).roly(dG-dm5C)	in D20	768 (Z) 3 776
Expe	.alv(dG-dm5C)	in H20	A) 782 (A) 778 777 776 (Z) 768 B) 787 (B) 11 12 12 12 12 12 12 12 12 12 12 12 12
	1 201	N-deut. :	
lated	ılcyto	N-de	777
Calculated	-methy	2	778
	d1):1		
	015(46-	in 1520	782 (A) 787 (B) 784 (Z)
	d b	in 1120	780 (A) 780 (B) 782 (Z)
	-dC)#-	~ ~	
Experimental	roly(d6-	in D20	778 (B) 778 (Z)
Experimental	roly(dG-dC).	in H20 in D20 : in H20	785 78 (B) 778 (B) 780 780 780 780 780 780 780 780 780 780
		D20	785 :
	5 - dC	n .	
1 1 1	ณ์	in H2(785

assign the non-planar vibration modes arising from the base residues observed experimentally in the 800-750 cm⁻¹ spectral region of the polynucleotide infrared spectra. The non-planar character of these infrared bands had been confirmed previously by linear dichroism which clearly showed that the dipole moment orientation corresponds to a direction parallel to the double-helix axis (Ghomi et al. 1984; Chinsky et al. 1984).

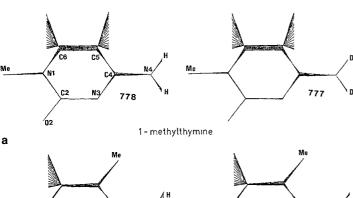
Table 6a shows the position of a rather intense and narrow band observed around $780 \, \mathrm{cm}^{-1}$ in infrared spectra of 2'-deoxycytidine. This mode is also observed in poly $(dG-dC) \cdot \mathrm{poly} \ (dG-dC)$ and poly $(dA-dC) \cdot \mathrm{poly} \ (dG-dT)$ (Taillandier et al. 1984, 1985) infrared spectra and is sometimes superimposed with an out-of-plane vibration mode of the guanine-residue which will be discussed elsewhere (Letellier et al. 1986 a).

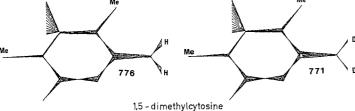
Moreover, this mode is not affected by Ndeuteration as shown by the infrared spectrum of deuterated poly (dG - dC) · poly (dG - dC) (Taboury et al. 1985). Although the methylation in the C5-site of cytosine residues does not cause a significant displacement of the 778 cm⁻¹ band (~ 2 cm⁻¹), the infrared spectrum of poly $(dG - dm^5 C) \cdot poly$ $(dG - dm^5C)$ in D₂O shows a considerable shift of this band ($\sim 10 \text{ cm}^{-1}$) towards the low frequency region (Taboury et al. 1985). As can be seen, all these spectral characteristics have been satisfactorily explained by calculations performed on pure or N-deuterated 1-methylcytosine and 1,5-dimethylcytosine considered as reasonable dynamic models for the out-of-plane vibration modes of the cytosine residue and its C5-methylated analog (Table 6a). However, we should avoid any undesirable confusion of this infrared band with the cytosine and cytosine residue Raman line located at about 785 cm⁻¹ and assigned to the ring-breathing vibration mode by several theoretical investigations (Susi et al. 1973; Letellier et al. 1986b; Tsuboi et al. 1986).

As far as the thymine residue is concerned, the infrared spectra of 2'-deoxythymidine 5'-monophosphate (5'-dTMP), poly (dA-dT) poly (dA-dT) and poly (dA-dC) poly (dG-dT) present a common band located at about 765 cm⁻¹ showing a high frequency shift ($\sim 8 \text{ cm}^{-1}$) upon N3-deuteration (Taillandier et al. 1984, 1985; Adam et al. 1986). As Table 6b shows. 1-methylthymine constitutes an acceptable model for interpreting the behaviour of this out-of-plane mode corresponding to the thymine residue involved in mononucleotide or polynucleotides. Figure 6a and b show the perspective representation of the out-of-plane modes explained above.

In conclusion, on the basis of the present calculations one can confirm the experimental assignment

Table 6b. Comparison between the experimental and calculated results for the characteristic infrared band of the thymine residue located around 765 cm⁻¹.


5'-deoxythymidine monophosphate (5'-dTMP) infrared spectra (Taillandier et al. 1985).


Poly $(dA - dT) \cdot \text{poly} (dA - dT)$ infrared spectra (Adam et al. 1986). Poly $(dA - dC) \cdot \text{poly} (dG - dT)$ infrared spectra (Taillandier et al. 1984).

(A): \widehat{A} form; (B): \widehat{B} form; (D): \widehat{D} form and (Z): \widehat{Z} form.

The calculated wavenumbers of 1-methylthymine and its N3-deuterated analogs are also reported. For assignments see Table 3

			rimental				ulated
57-dTI		: :poly(dA-dT) :	: :(To-da-di): :	•	:([b-Ob)vlog. #		
765	775	: 765 (A) : 765 (B) : 765 (D)	775 (A) 5 774 (B) 5	765 (A) 764 (B) 765 (Z)	772 (A) : 775 (B) : 774 (Z) :	763	768

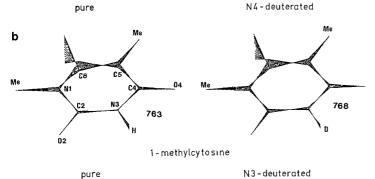


Fig. 6. Representation of the calculated vibration modes allowing us to assign the characteristic infrared bands observed in the 800-750 cm⁻¹ spectral region correlated with the out-of-plane modes of cytosine and thymine residues involved in mononucleotides and polynucleotides. See footnote of Fig. 2. a Characteristic vibration modes calculated in 1-methylcytosine and 1,5-dimethylcytosine. The behaviour of these modes upon the N-deuteration has also been shown. See Table 6a. b Characteristic vibration modes calculated in 1-methylthymine and its N3-deuterated analogs. See also Table 6b

of the infrared bands observed in polynucleotide spectra around 780 cm⁻¹ and 765 cm⁻¹, to the outof-plane modes of cytosine and thymine residues respectively. At the same time, Raman spectra of these molecules present two intense lines at about 785 cm⁻¹ (cytosine residue) and at 650 cm⁻¹ (thymine residue) (Benevides et al. 1984) which are assignable to the pyrimidine base in-plane breathing vibration modes (Letellier et al. 1986b, c).

References

Adam S, Liquier J, Taboury JA, Taillandier E (1986) Rightand-left-handed helices of poly d(A-T) poly d(A-T)investigated by I.R. spectroscopy. Biochemistry 25:3220-

Barker DL, Marsh R (1964) The crystal structure of cytosine. Acta Crystallogr 17:1581-1587

Benevides JM, Wang AHJ, Van der Marel GA, Van Boom JH, Rich A, Thomas GJ Jr (1984) The Raman spectra of left-

- handed DNA oligomers incorporating adenine-thymine base pairs. Nucleic Acids Res 12:5913-5925
- Bowmann WT, Spiro J (1980) J Chem Phys 73:5482-5492
- Chinsky L, Jolles B, Laigle A, Turpin PY, Taboury JA, Taillandier E (1984) Identification of a new electronic transition in the Z form of poly d(G-C) poly d(G-C), by infrared absorption and resonance Raman spectroscopy. Biopolymers 23:1931–1942
- Cordes de NDM, Walter JL (1968) Infrared and Raman spectra of heterocyclic compounds I. The infrared studies and normal vibrations of imidazole. Spectrochim Acta 24A:237-252
- Devi Prasad KV, Prohofsky EW (1984) Calculated frequency spectrum of Z form poly $d(G-C) \cdot \text{poly } d(G-C)$. J Biomol Struct Dyn 2:627-635
- Eyster JM, Prohofsky EW (1974) Lattice vibrational modes of poly (rU) and poly (rA). Biopolymers 13:2505–2526
- Ghomi M, Taillandier E (1985) Normal coordinate analysis of 5'-dGMP and its deuterated derivatives. A calculated approach to designate the guanine-residue vibration modes in *B* and *Z* form of DNA. Eur Biophys J 12:153–162
- Ghomi M, Taboury JA, Taillandier E (1984) Experimental and calculated study of the vibrational modes of poly d(G-C) poly d(G-C) in B and Z conformations. Biochimie 66:87-92
- Ghomi M, Letellier R, Taillandier E, Chinsky L, Laigle A, Turpin PY (1986) Interpretation of the vibrational modes of uracil and its ¹⁸O-substitued and thioderivatives studied by resonant Raman spectroscopy. J Raman Spectrosc 17:249-255
- Goel RK, Nitish K, Sanyal, Srivastava SL (1976) Vibrational spectra of some N-heterocyclic molecules of biological interest. Indian J Pure Appl Phys 14:842–845
- Guay F, Beauchamp AL, Gilbert C, Savoie R (1983) Vibrational spectra of Ag and Hg complexes of 1-methylthymine. Can J Spectra 28:13-20
- Hoogsten K (1963) The Crystal structure of 1-methylthymine. Acta Crystallogr 16:28-38
- Kyogoku Y, Higuchi S, Tsuboi M (1967) Infrared absorption spectra of the single crystals of 1-methylthymine, 9-methyladenine and their 1:1 complex. Spectrochim Acta 23A:969-983
- Letellier R, Ghomi M, Taillandier E (1986a) Out-of-plane vibration modes of the nucleic acid bases. II. II-Purine bases. Eur Biophys J 14:243-252
- Letellier R, Ghomi M, Taillandier E (1986b) Interpretation of DNA vibration modes: I The guanosine and cytidine residues involved in poly d(G-C) poly d(G-C) and $d(CG)_3 \cdot d(CG)_3$. J Biomol Struct Dyn 3:671–687
- Letellier R, Ghomi M, Taillandier E (1986c) Interpretation of DNA vibration modes: II The adenosine and thymidine residues involved in polynucleotides and oligonucleotides. J Biomol Struct Dyn (in press)
- Lu KC, Van Zandt LL, Prohofsky EW (1979) Displacement of backbone vibrational modes of A-DNA and B-DNA. Biophys J 28:27-32
- Nishimura Y, Tsuboi M, Sato T (1984) Structure-spectrum correlations in nucleic acids. I. Raman lines in the 600-

- 700 cm⁻¹ range of guanosine-residue. Nucleic Acids Res 12:6901-6908
- Peticolas WL, Strommen DP, Lakshminarayanan (1980) J Chem Phys 73:4185-4191
- Pohl FM, Ranade A, Stockburger M (1973) Biochim Biophys Acta 335:85-92
- Shimanouchi T (1968) Computer program for normal coordinate treatment of polyatomic molecules. University of Tokyo
- Stewart RF, Jensen LH (1967) Redetermination of the crystal structure of uracil. Acta Crystallogr 23:1102-1105
- Susi H, Ard J (1971) Vibrational spectra of nucleic and constituents I Planar vibrations of uracil. Spectrochim Acta 27A:1549-1562
- Susi H, Ard JS (1974) Planar valence force constants and assignments for pyrimidine derivatives. Spectrochim Acta 30 A: 1843 1853
- Susi H, Ard JS, Purcell JM (1973) Vibrational spectra of nucleic acids constituents – II Planar vibrations of cytosine. Spectrochim Acta 29 A: 725 – 733
- Szczesniak M, Nowak MJ, Rostkowska H, Szczepaniak K, Person WB, Shugar D (1983) Matrix isolation studies of nucleic acid constituents. 1. Infrared spectra of uracil monomers. J Anal Chem Soc 105: 5969-5976
- Taboury JA, Liquier J, Taillandier E (1985) Characterization of DNA structures by infrared spectroscopy: Double helical forms of poly d(G-C) poly d(G-C), poly $d(D^8G-C)$ poly $d(G-m^5C)$ poly $d(G-m^5C)$. Can J Chem 63:1904–1909
- Taillandier E, Taboury JA, Adam S, Liquier J (1984) Left-handed helical structure of poly $d(A-C) \cdot \text{poly } d(G-T)$ studied by infrared spectroscopy. Biochemistry 23: 5703 5706
- Taillandier E, Liquier J, Taboury JA (1985) Infrared spectral studies of DNA conformations. In: Clark RJH, Hester RE (eds) Advances in infrared and Raman spectroscopy, vol 12. Wiley Heyden, New York, pp 65-113
- Thamann TJ, Lord RC, Wang AH-J, Rich A (1981) The high salt form of poly d(G-C) poly d(G-C) is left-handed Z-DNA: Raman spectra of crystal and solutions. Nucleic Acids Res 20: 5443-5457
- Thomas GA, Peticolas WL (1984) Sequence dependence of conformations of self-complementary duplex tetradeoxynucleotides containing cytosine and guanine. Biochemistry 23: 3202-3207
- Tsuboi M, Takahashi S, Harda I (1973) Infrared and Raman spectra of nucleic acids Vibration in the base-residue. In: Duchesne J (ed) Physicochemical properties of nucleic acids. Academic Press, New-York, pp 91-145
- Tsuboi M, Nishimura Y, Hirakawa AY, Peticolas WL (1986) Resonance Raman spectroscopy and normal modes of the nucleic acid bases. In: Clark RHJ, Hester RE (eds) Advances in infrared and Raman spectroscopy (in press)
- Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York
- Zandt LL van, Lu KC (1977) Force constant corrections in redundant molecular coordinates. J Chem Phys 67:2636-2641